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Abstract
Shear break-up processes of polydisperse fractal clusters are investigated by
the ultrasound scattering technique. Within the framework of fractal aggre-
gation and the hybrid approach model for polydisperse correlated scatterers,
the concept of variance in the local filler concentration is used to derive a
new expression for the scattering cross-section for polydisperse fractal aggre-
gates in the Rayleigh scattering regime. Considering the scaling laws for the
shear-induced disruption of the clusters, the shear stress dependence of the ul-
trasound scattered intensity for polydisperse fractal aggregates is also derived.
The fractal scattering regime is further discussed for both monodisperse and
polydisperse clusters of size larger than the wavelength. In-line ultrasonic mea-
surements for the shear disruption processes of silica fume fillers compounded
with polypropylene during extrusion are investigated. A critical disaggregation
shear stress is determined and is found to decrease with the filler surface treat-
ment concentration. This stress is representative of the particle adhesiveness
and aggregate dispersion in the matrix. This is confirmed by the improve-
ment in impact resistance tests. On the basis of the scaling laws and the self-
consistent-field approximation usually used in the microrheological models,
the shear-thinning behaviour of silica fume clusters is successfully simulated.
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Nomenclature

f Ultrasound frequency
λ Wavelength
r̄ , a Particle radii
R Cluster radius

R̂ Maximum size of filling space subclusters at rest
κp Compressibility of the scatterers
κ0 Compressibility of the suspending medium
ρ0 Density of the suspending medium
ρp Density of the scatterers
�k, �s Incident and scattered wavenumber vectors
n, ni Particle numbers per unit of volume
na Cluster number per unit of volume
V, Vi Particle volumes
Va Cluster volume
σm, σp, σam, σap Differential scattering cross-sectional areas
Wm, Wp Packing factors
m Critical exponent for cluster break-up
φ Filler volume fraction
φa Cluster volume fraction
φg Gelation or percolation threshold
γ̇ Shear rate at the wall
γ̇c Critical disaggregation shear rate
µ, µa Shear viscosities of the suspension
µ0 Shear viscosity of the matrix polymer
µ0m Zero-shear-rate viscosity of the polymeric matrix
τ Shear stress
τc Critical disaggregation shear stress
τ ∗ Critical shear stress for cluster break-up
τ0 Yield stress
αt Total attenuation (αt = αap + αpol)

αpol Ultrasonic attenuation in the polymeric matrix
αp, αm, αap Scattering cross-sections per unit of volume
αr Dimensionless scattering coefficient (αr = αap/αp)

ν Ultrasonic velocity
e Thickness of the polymeric matrix
w Angular frequency
var(r) Normalized variance in size of the particles
vara(R) Normalized variance in size of the clusters
var(ω) Variance of the particle number in a voxel
ω Particle number in a voxel
D Fractal dimension of a cluster
N Particle number in a cluster
Nb Number of subunits of size 1/q in a cluster
�V Volume of an elemental voxel
q Scattering wavenumber (q = s − k)
Sm, Sp Structure factors
� Surface adhesive energy
F Force required to break two particles
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1. Introduction

There is a growing of interest in the use of ultrasound as a basis for non-destructive evaluation
of media that consist of a homogeneous isotropic continuous phase in which small particles are
randomly dispersed. The continuous phase may be liquid, with liquid or solid particles as in
food products, paints or lubricants, or both phases may be solid as is the case for filled polymers,
particularly adhesives. The use of fillers in thermoplastics to obtain specific properties at low
cost is an alternative of considerable interest. Fillers are added to polymer to enhance the
mechanical properties such as impact strength, high-temperature creep resistance, stiffness
and opacity [1, 2]. Ultrasonic wave propagation in such media is affected by relaxations
in the continuous polymer phase as well as by scattering at filler particles [3, 4]. Particle
agglomeration influences the scattered power from a dense aggregate of size much smaller
than the wavelength (Rayleigh scattering regime) which scales as the square of the cluster
volume [5]. Over the last two decades, numerous theoretical models of ultrasound scattering
have initiated an upsurge of interest in the prediction of acoustic properties of aggregated
suspensions [6–9]. Many of the contributions have been directed at understanding the
relationship between the ultrasonic scattered power and filler volume fraction. Little attention
has been paid to the ultrasound scattering from a dense distribution of particles or clusters which
can no longer be considered as independent scatterers since the increase in correlation among
scatterers (particles or aggregates) induces destructive interferences and a decay in the scattered
power as the filler volume fraction increases [6]. Moreover, particle size distribution increases
the scattered power as the particle volume fraction increases, because of additional scattering
arising from polydispersity [10, 11]. Shear disruption processes and multiple hydrodynamic
interactions in dense-packed systems further influence both the equilibrium aggregate size and
the ultrasonic scattered power [12].

In the present study, shear break-up processes of polydisperse fillers in polymer melts
are studied by the ultrasound scattering technique. The first section concerns ultrasound
scattering from a dense suspension of polydisperse fillers. Many numerical simulations and
experimental works suggest that aggregates behave as fractal on a scale larger than the primary
particle size [13]. Taking into account the fractal properties of the clusters and within the
framework of the hybrid approach model for mixtures of correlated Rayleigh scatterers [6,14],
we consider the concept of variance in local filler concentration and then we derive a new
expression for the scattering cross-section per unit of volume for polydisperse fractal clusters
in the Rayleigh scattering regime. On the basis of the mean-field approach proposed by
Snabre and Mills [15, 16] giving the scaling laws for the shear break-up of the clusters, we
describe the shear stress dependence of the ultrasound scattered intensity for polydisperse
fractal aggregates in dense media. The fractal scattering regime is further discussed for clusters
of size larger than the wavelength. In a second part, we present experimental results for the shear
disruption processes of silica fume aggregates. Chemically treated and untreated silica fumes
have been incorporated in polypropylene. In-line ultrasonic measurements were performed
during extrusion of the compounds to investigate the effects of filler volume fraction and shear
rate. Ultrasonic experiments are discussed on the basis of the scaling laws used. The ability of
the ultrasonic scattering method to estimate the critical disaggregation shear stress and to give
quantitative information about the particle adhesiveness in relation to the filler surface treatment
is discussed. In the last section, ultrasonic results are correlated with impact resistance tests.
Using the microrheological model based on the mean-field approximation [15, 16] and the
estimates of the critical shear stress, we then describe the shear-thinning behaviour of untreated
silica fume aggregates during extrusion.
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2. Ultrasound scattering theory

2.1. Uncorrelated monodisperse scatterers

Ultrasound scattering from particles arises from the different modes of vibrations in relation
either to compressibility or density mismatches. A mismatch in compressibility causes the
obstacle to pulsate (expand and contract), whereas a mismatch in density causes the obstacle
to oscillate back and forth about the undisturbed position [5]. The Green function approach
gives the differential scattering cross-section σm(�k, �s) of a weak Rayleigh scatterer of average
size r̄ , volume V and arbitrary shape [17]:

σm(�k, �s) = pV 2(r) (1)

with

p = π2f 4(κ0ρ0)
2

[(
κp − κ0

κ0

)
+

(
ρp − ρ0

ρp

) �k · �s
ks

]2

(2)

where f is the ultrasound frequency, κp, κ0 and ρp, ρ0 are the compressibilities and densities
of the scatterer and suspending medium, respectively and �k, �s are the scattered wavenumber
vectors. The ultrasonic scattering coefficient αm(�k, �s) defined as the power scattered per unit
solid angle from a unit volume for an incident plane wave of unit amplitude then scales as the
average number n of the scatterers per unit volume [18]:

αm(�k, �s) ≈ nσm(�k, �s). (3)

2.2. Uncorrelated polydisperse scatterers

For mixtures of ni similarly shaped but differently sized particles (ri for i = 1–N ), of volume
Vi , we consider the net filler volume fraction φ = ∑

niVi = n
∑

(ni/n)Vi ≡ n〈V 〉 of the
polydisperse scatterers to give an equation analogous to (3), which is therefore given by

αp(�k, �s) ≈ p
∑

niV
2
i = np

∑ (
niV

2
i

n

)
= nσp(�k, �s), (4)

where the corresponding low-frequency scattering cross-sectional area σp(�k, �s) scales as [10,
11]

σp(�k, �s) = p
∑ (

niV
2
i

n

)
≈ p〈V 2〉. (5)

In the framework of a continuous size distribution governed by Poisson probability functions
whose skewness depends on the normalized variance in size var(r) = (〈r2〉−r̄2)r̄2 of the
scatterers, the ultrasonic scattering cross-sectional area σp(�k, �s) thus becomes

σp(�k, �s) ≈ p
〈V 2〉
〈V 〉 〈V 〉 = σm(�k, �s)(1 + var(r))(1 + 2 var(r)) · · · (1 + 5 var(r)). (6)

The low-frequency scattered power αp(�k, �s) from polydisperse uncorrelated scatterers per unit
of volume in the Rayleigh scattering regime then scales as [11]

αp(�k, �s) ≈ nσm(�k, �s)(1 + var(r))(1 + 2 var(r)) · · · (1 + 5 var(r)). (7)

Particle size distribution influences the scattering behaviour of individual polydisperse
scatterers and induces an increase of the scattering cross-section per unit of volume because
of additional scattering arising from polydispersity.
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2.3. Mixtures of correlated scatterers

Departure from independent scattering occurs in densely packed systems where the scatterers
can no longer be treated as independent since proximity effects and correlation effects lower
the ultrasonic scattered power because of destructive interference of the wavelets arising from
a dense distribution of scatterers [19, 20].

Within the framework of the particle approach, coherent addition of the scattered waves
leads to the ultrasonic scattering coefficient αp(�k, �s):

αp(�k, �s) = nσp(�k, �s)Wp(�k, �s) = np〈V 2〉Wp(�k, �s) (8)

where Wp(�k, �s) is the packing factor derived from the Percus–Yevick pair correlation for
mixtures, accounting for dependent scattering in dense systems [10, 11]. The packing factor
is contingent on the selection of an appropriate pair correlation function depending on particle
volume fraction, particle shape, particle size distribution and flow conditions. Assuming
polydisperse scatterers and no shear dependence of the pair correlation function, the packing
factor Wp(φ) is given by

Wp(φ) = Wm(φ)

[
1 +

φ

(1 − φ)

12 var(r)

(1 + 5 var(r))
+

φ2

(1 − φ)2

9 var(r)

(1 + 4 var(r))

]
(9)

where Wm(φ) = (1 − φ)4/(1 + 2φ)2 represents the packing factor for the monodisperse
case [14]. The primary effects of polydispersity as shown in figure 1 are to increase the
scattered power per unit of volume and to reduce the fall-off as the filler volume fraction
increases. The packing factor viewpoint further involves complex statistical mechanics and
provides some physical insight [10, 11]. One may thus consider an alternative viewpoint
derived from the hybrid approach [6,14] and based on the concept of variance in local particle
volume fraction. This approach sums the wavelets from elemental volumes of size ≈λ/2π

(the voxel), small enough that the incident wave arrives with the same phase at every particle
located within it. The scattered power can be split into a part arising from a ‘crystalline’
phase which gives no net contribution because of destructive wave interference and another
representing contributions from independent fluctuations in the particle number ω within the
elemental voxel of volume �V and size ≈1/k. The low-frequency scattered power from a
dense suspension then scales as the variance var(ω) = ω2 −ω2 of the particle number ω within
a voxel [6, 14]:

αp(�k, �s) = nσp(�k, �s)(var(ω)/ω) = np〈V 2〉(var(ω)/ω) (10)

with n = ω/�V

2.4. Irreversible fractal clusters

Several models of random cluster growth developed in the last decade suggest that aggregates
behave as fractal on a scale larger than the primary particle size. Computer simulation led to
self-similar clusters with radius of gyration obeying the scaling relationship [13]

R(N) ≈ r̄N1/D (11)

where N is the number of particles in the fractal cluster, r̄ the characteristic radius of elementary
particles and D the fractal dimension. A fractal dimension less than the Euclidean dimension
d corresponds to open floc structures with porosity increasing with size.

Within the framework of a fractal homogeneous aggregation, recent works by Snabre and
co-workers [12, 23, 24] show that ultrasonic scattering from a Rayleigh cluster (Rk � 1) is
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Figure 1. A plot of the packing factor times the particle volume fraction φWp(φ) versus the filler
volume fraction with var(r) = 0 ( ), var(r) = 0.05 (♦), var(r) = 0.1 (•), var(r) = 0.25 (♦) and
var(r) = 0.5 (�).

coherent and that the scattering cross-sectional area σam(�k, �s) of a cluster of arbitrary shape is
proportional to the square of the particle number N within the aggregates:

σam(�k, �s) ≈ N2σm(�k, �s). (12)

For continuous distributions of the clusters, taking 〈R2〉 = 〈r2〉N2/D one may consider the
normalized variance in size vara(R) of the aggregates which scales as the normalized variance
var(r) of individual scatterers:

vara(R) = 〈R2〉 − R
2

R
2 ≈ r2N2/D[1 + var(r)] − r2N2/D

r2N2/D
= var(r) (13)

and then we derive the ultrasonic scattering cross-sectional area σap(�k, �s) of a fractal aggregate
of N polydisperse particles within the fractal structure:

σap(�k, �s) ≈ p〈V 2
a 〉 ≈ p

( 〈V 2
a 〉

〈Va〉
)

〈Va〉 for kr̄N1/D � 1 (14)

with

〈V 2
a 〉/〈Va〉 = 〈Va〉 (1 + 3 var(r))(1 + 4 var(r))(1 + 5 var(r))

(1 + var(r))(1 + 2 var(r))
(15)

and

〈Va〉 = Va(R)(1 + var(r))(1 + 2 var(r)). (16)

Substituting for the ratio (〈V 2
a 〉/〈Va〉) and the average volume 〈Va〉 of a cluster in equation (14),

the ultrasonic scattering cross-sectional area σap(�k, �s) for a fractal cluster scales as

σap(�k, �s) ≈ N2σm(�k, �s)(1 + var(r))(1 + 2 var(r)) · · · (1 + 5 var(r)). (17)

According to the hybrid approach model for mixtures of correlated Rayleigh
aggregates [12, 23], the ultrasonic scattering coefficient αap(�k, �s) is therefore given by

αap(�k, �s) ≈ naσap
(�k, �s)

(
vara(ω)

ω

)
(18)
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where vara(ω) is the variance of the particle number ω in a voxel, na = n/N the number of
clusters per unit volume. Cluster growth increases the variance in particle number because
each voxel can gain or lose a large number of elementary particles. At a first approximation,
the variance vara(ω) increases linearly with the volume fraction φa of the aggregates and can
be reasonably approximated by [12, 23]

vara(ω) ≈ φa

φ
var(ω) for N � (kr̄)−D. (19)

Then,

αap(�k, �s) ≈ naN
2

(
φa

φ

)
σm(�k, �s)

(
var(ω)

ω

)
(1 + var(r))(1 + 2 var(r)) · · · (1 + 5 var(r)). (20)

We further define the ultrasonic normalized scattering coefficient αr = αap(�k, �s)/αp(�k, �s).
Using equations (10) and (20), the dimensionless ultrasonic scattering coefficient αr then
becomes

αr(�k, �s) = αap(�k, �s)
αp(�k, �s) =

(
na

n

)(
φa

φ

)
N2 =

(
R

a

)3

for kr̄N1/D � 1 (21)

where

φa

φ
= na〈Va〉

n〈V 〉 =
(

1

N

)(
Va(R)

V (r)

)[
(1 + vara(R))(1 + 2 var(R))

(1 + var(r))(1 + 2 var(r))

]
=

(
1

N

)(
Va(R)

V (r)

)
. (22)

The ultrasonic normalized scattering power is nearly isotropic in the Rayleigh scattering regime
and scales as the average volume Va(R) of clusters with no significant dependence on the filler
volume fraction and particle size distribution.

Far-field coherence effects and particle size distribution together determine the cluster
volume dependence of the scattering coefficient αr . One can indeed expect no influence of
the fractal dimension of clusters upon the scattering coefficient αr because the transducer
cannot resolve the internal structure of aggregates smaller than voxels. As a consequence,
the dimensionless scattering coefficient αr can be interpreted as an aggregation index in the
Rayleigh scattering regime.

2.5. The fractal scattering regime

For aggregates of dimension larger than a voxel (kR � 1), the hybrid approach is no longer
valid and ultrasound scattering becomes strongly anisotropic because of angle-dependent
destructive interferences. Considering the scattering wavenumber q = s − k, the choice of a
scattering angle θ sets a length scale 1/q = [2k sin(θ/2)]−1 under which scattering remains
coherent. Therefore one may decompose an aggregate into smaller subunits or blobs of size
≈1/q with a number Nb ≈ (qa)−D of elementary particles. One subunit scatters coherently a
power scaling as N2

b . In contrast, the scattered waves from different subunits add incoherently
and the differential scattering cross-section σa(�k, �s) of arbitrary-shape aggregates scales as the
number N/Nb of subunits in the cluster [12, 23]:

σam(�k, �s) ≈
(

N

Nb

)
N2

b σm(�k, �s) ≈ N2Sm(qR)σm(�k, �s) (23)

where Sm(qR) ≈ Nb/N ≈ (qR)−D is commonly referred to as the structure factor in coherent
optics and describes spatial correlations between particles in fractal structures [25, 26]. The
fourth-order frequency law characterizing the Rayleigh scattering regime no longer applies for
clusters larger than a voxel (σam(�k, �s) ≈ a6R−DλD−4).
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In the case of polydisperse distributions, the differential scattering cross-sectional area
involves an effective structure factor Sp(qR) accounting for polydispersity effects and scaling
as

Sp(qR) ≈ (qR)−D(1 + var(r))(1 + 2 var(r)) · · · (1 + 5 var(r))

≈ Sm(qR)(1 + var(r))(1 + 2 var(r)) · · · (1 + 5 var(r)). (24)

The low-frequency scattering cross-sectional area σap(�k, �s) thus becomes

σap(�k, �s) ≈ N2Sp(qR)σm(�k, �s)
≈ N2Sm(qR)(1 + var(r))(1 + 2 var(r)) · · · (1 + 5 var(r))σm(k, s). (25)

For large clusters (qR � 1), the directional scattering cross-section naσap(�k, �s) per unit of
volume then scales as

αap(�k, �s) ≈ φ

〈V 〉 (qa)−Dσm(�k, �s)(1 + var(r))(1 + 2 var(r)) · · · (1 + 5 var(r)) (26)

≈ φ

V (r̄)
(qa)−Dσm(�k, �s)(1 + 3 var(r))(1 + 4 var(r))(1 + 5 var(r)). (27)

In the fractal scattering regime (kR � 1), the dimensionless ultrasonic scattering coefficient
αr = αap/α

p
≈ (qa)D(1 + 3 var(r))(1 + 4 var(r))(1 + 5 var(r))/W(φ) mainly involves the

scattering angle and fractal dimension of the clusters and thus becomes sensitive to the internal
structure of the aggregates and therefore to the polydispersity of the scatterers. The normalized
scattered power per unit of volume is no longer sensitive to the cluster size and as a consequence
can no longer characterize the aggregation state of a suspension.

3. Shear break-up of fractal clusters

3.1. Equilibrium size of the aggregates in shear flow

Above a critical yield stress, the shear-thinning behaviour of aggregated suspensions results
from the rupture of the spanning network and finite clusters when increasing the shear stress.
Clusters can grow in a shear field until they reach a maximum stable size corresponding to a
dynamical equilibrium between formation and shear break-up of the aggregates [15, 27–34].
An aggregate with radius above the maximum stable size is disrupted by shear stresses. As
shown by experimental investigations [29] and computer simulations [35,36], the shear stress
dependence of the equilibrium radius R(τ) of an isolated fractal cluster obeys the general
power law

R(τ)

r
≈

(
τ ∗

τ

)m

with 0.3 < m < 0.5 (28)

where the critical shear stress τ ∗ ≈ �/a for cluster break-up is related to the surface adhesive
energy � (adhesive energy per unit contact area) and the characteristic radius r̄ = a of
elementary particles. The fragility of bonds depends on the reversibility of cluster deformation
under the action of external stresses [35,37]. Soft and rigid clusters represent extreme possible
behaviour of the aggregates. Rigid clusters are more probably broken into secondary aggregates
of approximately equal parts (the large-scale fragmentation process) since elastic deformations
are transmitted over the whole structure. On the other hand, soft structures are irreversibly
deformed by external stresses and splits of individual particles and small clusters one by one
until the cluster reaches a stable size (the surface erosion process) [15, 35].

We may thus consider the mean-field approach proposed by Snabre and Mills [15] giving
a scaling law similar to the phenomenological equation (28) with m = 1/2 for deformable
aggregates and m = 1/3 for rigid clusters.
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We introduce a correlation length ξ under which elastic stresses are transmitted and
consider the cluster as a soft assembly of rigid subunits of radius ξ [15]. A three-dimensional
cluster of fractal dimension D � 2 strongly interacts with the surrounding fluid and roughly
behaves hydrodynamically like an impermeable compact sphere with a hydrodynamic radius
close to the radius of gyration [37]. An impermeable cluster of size R further experiences a
viscous force:

F =
∫

=
τ ds = τR2 (29)

where
=
τ is the viscous stress tensor and ds an outer surface element. This shear force exerts a

bending moment M = Fξ on the rigid branches of size ξ located on the outer surface of the
cluster. A bending moment higher than the critical moment M∗ ≈ τ ∗a3 ≈ �a2 for breaking
a cluster leads to the rupture of rigid subunits. The breaking criterion Fξ = �a2 and the
characteristic shear stress for cluster break-up then give the maximal stable size R(τ):

R(τ) ≈
(

�a2

τξ

)1/2

. (30)

For soft clusters, outer chains of size ξ ≈ a are stretched one by one until the cluster reaches
the maximal stable size R(τ):

R(τ)

a
≈

(
τ ∗

τ

)1/2

with τ ∗ ≈ �/a. (31)

In the case of rigid structures, the correlation length is the same order as the whole size of the
radius of the aggregate and then this structure is broken into equal parts:

R(τ)

a
≈

(
τ ∗

τ

)1/3

with τ ∗ ≈ �/a. (32)

Equations (31) and (32) for soft and rigid aggregates give the upper and lower bound of
the exponent m in the general law (28). On one hand, for a weak bonding energy (reversible
aggregation), recent computer simulations of the shear-induced disruption of three-dimensional
soft aggregates give m = 1/2 [29]. On the other hand, the lower value m = 1/3 agrees well
with experimental data from Torres et al [36] for rigid clusters in relation to irreversible
flocculation (strong bonding energy).

3.2. Ultrasonic scattering from irreversible fractal clusters in shear flow

We can now derive the shear stress dependence of the ultrasound scattering cross-section per
unit of volume from a dense suspension of Rayleigh polydisperse fractal clusters. Considering
both the cluster volume dependence of the scattered power per unit of volume (equation (21))
and the scaling law for the shear break-up of the clusters (equation (28)), the dimensionless
ultrasonic scattering coefficient αr(τ ) then obeys the power law

αr(τ ) =
(

R(τ)

a

)3

≈ 1 +

(
τ ∗

τ

)3m

for kR � 1 (33)

where particle adhesiveness and cluster deformability respectively determine the critical shear
stress τ ∗ for cluster break-up and the exponent m. In the Rayleigh scattering regime, the
particle volume fraction within the aggregates, the particle size distribution and the fractal
dimensionality have no influence on the size of Rayleigh clusters and therefore on the
dimensionless ultrasonic scattering coefficient.
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4. Ultrasonic scattering from silica fume aggregates

4.1. Silica-fume-filled polypropylene

Silica fumes are a by-product of the silicon or ferrosilicon industry when production is in
electric furnaces. Raw silica fume waste from a silicon plant (Péchiney Electrométallurgie,
France) was used as fillers to increase the stiffness of thermoplastic polymers, especially
polypropylene. Silica fumes have a particle average size of 50 nm and a specific surface area
of 20 m2 g−1. Polypropylene used in compounding (PP3400MA1 from APPRYL) has a melt
flow index of 40 g/10 min.

4.2. Experimental procedure

Rheo-acoustic experiments were performed for silica fume aggregates dispersed in a PP
homopolymer at 30 wt% loading. Ultrasonic measurements were first performed in static
mode [38, 39] (figure 2(a)). The polymer with known thickness e was confined between
two aligned steel rods at the opposite end of which the ultrasonic transducers were attached.
Ultrasonic properties of the confined polymer were obtained under controlled pressure (P ) and
temperature (T ). Longitudinal waves were then produced with piezoelectric transducers at a
frequency of 2.68 MHz. The generating transducer sends a burst of sound propagating down
the transmission line. At the steel/polymer interface, one part of the energy was transmitted
into the polymer; there the pulse travelled with a characteristic velocity v, while its amplitude
decreased with path length, z, according to exp(−αtz), where αt is the total attenuation resulting
from relaxation mechanisms in the polymeric matrix and scattering by fillers. On reaching the
second interface, part of the energy crossed over and was detected by the receiving transducer.
The remainder of the energy reverberated in the polymer until completely damped, giving rise
to a series of echoes, A1, A2, A3. The ultrasonic attenuation αt , which measures both the
mechanical energy lost to the polymer αpol and the scattering fraction αap from the fillers of
size much smaller than the wavelength, was calculated from the amplitude ratio of successive
echoes, and defined on a logarithmic scale in dB as αt = αap + αpol = 10[log(A1/A2)]/e
while the ultrasonic velocity was determined from the time delay �t , for a round trip, between
successive echoes v = 2e/�t .

The ultrasonic technique was adapted for in-line monitoring [39]. For this purpose,
ultrasonic probes are fitted to an extrusion slit die (figure 2(b)) to generate pulses of ultrasound
across the thickness e of the flowing melt (resonance frequency of the transducers f = 5 MHz).
In that case, the whole polymer flow is characterized at a rate as high as five times per second.
The die is also equipped with thermocouples for measuring both die temperature TDie and melt
temperature TMelt, and pressure sensors for describing the pressure profile along the flow and
hence the pressure P near the ultrasonic probes and the shear stress at the wall. The signals
are digitized and the ultrasonic parameters are extracted using specialized high-speed signal
analysis algorithms.

4.3. Shear break-up of silica fume aggregates

Silica fume particles exhibit a strong tendency to form aggregates. Particle flocculation results
in an increase of the scattering coefficient αap = αt − αpol which scales as the square of the
cluster volume. Ultrasonic measurements in static mode were done on four compounds with
different filler concentration. Ultrasonic attenuation due to the scattering is shown in figure 3
as a function of the silica fume volume fraction. The attenuation increases up to around
φ ≈ 20% as the particle volume fraction increases. Departure from uncorrelated scatterers
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Figure 2. (a) The experimental ultrasonic device used for static mode experiments. (b) The
experimental ultrasonic instrumented die with ultrasonic transducer (US), pressure probes (P) and
both die and melt thermocouples (TDie and TMelt).
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Figure 3. Ultrasonic attenuation αap in static mode due to scattering from untreated silica fume
aggregates in suspension in polypropylene versus filler volume fraction φ (T = 160 ◦C and
P = 100 bar).

occurs for higher filler concentration as indicated by the last experimental value. This result
is in agreement with the evolution of the packing factor described in figure 1. Larger filler
concentrations are needed to observe the attenuation decrease attributed to correlated scatterers.

Ultrasonic experiments were performed during the extrusion of two compounds to
investigate the shear break-up processes of silica fume aggregates. The screw speed was
increased step by step and both the attenuation and velocity were monitored when the steady
state was reached, with pressure profiles in the die. Mass throughput measurements were
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Figure 4. Dimensionless ultrasonic scattering coefficient αr versus the wall shear rate γ̇ for
untreated silica fume particles in polypropylene. Filler volume fraction φ = 0.08 (◦) and φ = 0.17
(�). T = 205 ◦C.

Table 1. Experimental values of the critical disaggregation shear rate γ̇c , shear viscosity µ(γ̇c) and
critical shear stress τc for two silica fume compounds (not treated particles) with polypropylene
(volume concentration φ).

γ̇c µ(γ̇c) τc

φ (s−1) (Pa s) (kPa)

0.08 712 98.2 69.91
0.17 445 156.6 69.68

done to determine the shear rate at the wall for each rpm step, using the classical relationship
γ̇ = 6Q/lh2, where Q, l, h are respectively the volume throughput, the width and the thickness
of the die. A Rabinovitch-type correction was applied to take into account the non-Newtonian
behaviour of the polymer melt, using the wall shear stress determination from the pressure
profile [40]. The die gap thickness was 1 mm and the die temperature was set to 205 ◦C.

The dimensionless ultrasonic scattering coefficient αr = αap/αp was determined after
the dynamical equilibrium state was reached and plotted as a function of the wall shear rate
γ̇ (figure 4). The normalized scattering coefficient αr decreases when increasing the shear
rate γ̇ because of the shear break-up of silica fume aggregates into smaller ones. The critical
disaggregation shear rate γ̇c was then defined in terms of the extrapolated intercept [12,15,23].
The local shear field around the particles and the critical disaggregation shear rate γ̇c are
strongly influenced by multiple hydrodynamic interactions in a dense suspension. Under
defined shear rate conditions, particle crowding does indeed increase the viscosity of the
suspension, resulting in a more efficient dispersion of aggregates and a lower scattering
coefficient. Raising the particle volume fraction φ then shifts the critical shear rate γ̇c(φ)

towards lower values [12, 15, 23]. Table 1 summarizes the critical parameters for the two
compounds.

The critical shear stress τc defined as the product of the critical shear rate γ̇c and the
shear viscosity µ(γ̇c) no longer depends on the filler volume fraction (table 1). The critical
disaggregation shear stress τc ≈ 69 × 104 N m−2 is indeed representative of the mechanical
force required to disrupt bonds between silica fume particles [12,15,23]. From the Derjaguin
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Figure 5. Dimensionless ultrasonic scattering coefficient αr = αap/αp versus the shear stress
τ = µa(γ̇ )γ̇ for untreated silica fume particles in polypropylene. Filler volume fraction φ = 0.08
(◦) and φ = 0.17 (�). T = 205 ◦C.

theory [40], the force F ≈ τca
2 which is required to break a bond between two aggregated

particles scales as �a (� is the surface adhesive energy). For untreated silica fume particles
(τc ≈ 69 × 104 N m−2 and r̄ = a ≈ 50 nm), the surface adhesive energy is estimated to be
� ≈ τ ∗a ≈ 3.45 × 10−2 N m−1.

The effective-medium approximation used in the microrheological models [15] states
that interacting aggregates behave like isolated clusters in a fluid of viscosity equal to the
shear viscosity of the suspension and thus experience an effective shear stress τ = µa(γ̇ )γ̇ .
Therefore we have plotted in figure 5 the dimensionless scattering coefficient αr(τ ) against the
shear stress τ = µa(γ̇ )γ̇ to account correctly for the microrheological conditions around the
clusters whatever the particle concentration. Experimental data for the normalized scattering
coefficientαr(τ ) then lie on a single curve since the local shear stress determines the equilibrium
size of interacting aggregates. The master curve αr(τ ) further indicates that correlation
effects among individual particles or small aggregates only involve the average particle volume
fraction, since the transducer cannot resolve aggregates smaller than a voxel [12, 23].

Silica fume aggregates can be considered as rigid clusters of fractal dimension D ≈ 2
since small elastic deformations are transmitted over the whole structure and then preserve the
structure of rigidly connected particles in relation to irreversible aggregation [15,33]. We may
thus estimate the dimensionless scattering coefficient αr(τ ) from equation (33) with m = 1/3.
Taking a characteristic shear stress τ ∗ = τc/3, relation (33) describes well the shear stress
dependence of the dimensionless scattering coefficient αr(τ ) as shown in figure 6.

In the case of moderate ultrasound frequency such that the wavelength is much larger
than the clusters, rheo-ultrasonic experiments provide a way to estimate the characteristic size
of the aggregates and to gain quantitative information about the critical disaggregation shear
stress which is representative of the particle adhesiveness [12, 23, 24]. For this purpose four
compounds corresponding to silica fumes treated with different concentrations of hydrogenated
tallow amine were investigated. As shown in figures 7 and 8 as the coating of hydrogenated
tallow amine is added, both the ultrasonic scattering power and the critical disaggregation
shear stress decrease, before levelling off at higher amine concentration (figure 9). Chemical
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Figure 6. Dimensionless ultrasonic scattering coefficient αr = αap/αp versus the shear stress
τ = µa(γ̇ )γ̇ for untreated silica fume particles incorporated in PP. Filler volume fraction φ = 0.08
(◦) and φ = 0.17 (�). T = 205 ◦C. The solid curve is calculated from the rheo-acoustic model
αr ≈ 1 + (τ ∗/τ)3m with m = 1/3 for rigid clusters.
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Figure 7. Ultrasonic attenuation αap due to scattering from silica fume aggregates treated with
fatty amine in suspension in polypropylene versus the coating level of hydrogenated tallow amine
c (%). T = 205 ◦C and P = 100 bar. Filler volume fraction φ = 0.17.

treatments with amine allow a better dispersion of silica fume aggregates. Hydrogenated
tallow amine treatment of the filler further enhances the electrostatic repulsive interaction
forces and thus reduces the cohesive forces between particles. Conversely, on plotting the
impact resistance versus the coating level of hydrogenated tallow amine c (%) (figure 10), we
further obtain a curve which increases as the coating is added, indicating a better dispersion
of suspension around c (%) = 3.
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Figure 8. Dimensionless ultrasonic scattering coefficient αr = αap/αp versus the shear stress
τ = µa(γ̇ )γ̇ for silica fume particles treated with hydrogenated tallow amine in PP. Fatty amine
concentration c = 0.5% (◦), c = 1% ( ), c = 2% (�) and c = 4% (�). Filler volume fraction
φ = 0.17 and T = 205 ◦C.
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Figure 9. Critical disaggregation shear stresses τc determined from the ultrasonic scattering
experiments versus the hydrogenated tallow amine concentration c (%).

5. Shear viscosity of aggregated suspensions

The rheology of multi-phase polymeric systems is a very complex subject. During the last four
decades statistical models of polymer entanglement [41] and random cluster growth [21, 42]
have initiated an upsurge of interest in the rheological properties of aggregated colloids.
Within the framework of fractal aggregation, mean-field theories of growth and rupture of
fractal clusters were first proposed by Mills and Snabre [27,28], Sonntag and Russel [29] and
Patel and Russel [30]; they indicated a power-law dependence of the viscosity on the shear
rate. For aggregated colloidal dispersions, the microrheological models usually assume the
effective-medium approximation, in which the viscosity of the medium around a cluster is the
viscosity of the suspension, and differ from each other in the rheological laws used for hard-
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Figure 10. Impact resistance versus the coating level of hydrogenated tallow amine c (%).

sphere suspensions and the break-up process of the aggregates [15, 31–34]. Recent computer
simulations [35, 43] and experimental studies [36, 44–46] of the break-up of aggregates in
shear or elongational flow are often limited to the diluted regime and neglect the hydrodynamic
interactions between aggregates.

We consider in this section the microrheological model proposed by Snabre and Mills [15]
based on a reference viscosity law describing the Newtonian behaviour of hard spheres in purely
hydrodynamic interactions [27, 28]:

µ(φ)

µ0
= 1 − φ

(1 − φ/φ∗)2
(34)

where µ is the viscosity of the non-aggregated suspension, µ0 is the viscosity of the suspending
medium and φ∗ is the maximum packing fraction of the structural units.

The polymeric fluid further exhibits Newtonian behaviour at low shear rates and shear-
thinning behaviour at high shear rates of deformation [47]. We may thus consider the
viscoelastic properties of the polymeric matrix by introducing the Bird–Carreau expression in
equation (34):

µ0(γ̇ ) = µ0m[1 + (Cγ̇ )2]
(n−1)/2

(35)

where µ0m is the zero-shear-rate viscosity of the matrix polymer and C is a constant related to
the onset of shear thinning.

In the case of particle aggregation, the suspension shows a yield stress above the gelation
threshold φg because of the formation of an infinite spanning network which displays a solid-
like viscoelasticity behaviour [22]. At rest, fractal structures then fill space and reach a
maximum size R̂(φ) which decreases with particle volume fraction [15,27,28]. The suspension
may then be considered as a collection of fractal subclusters of mean density φ and size
R̂(φ) ≈ a(φ/φ∗)1/(D−3) packed with a volume fraction φ∗.

Above the yield shear stress τ0, the space-filling subclusters of size R̂(φ) are broken into
smaller clusters and the suspension may flow. The condition R(τ) = R̂(φ) then gives an
expression for the yield shear stress τ0:

τ0 ≈ τ ∗
[(

φ

φ∗

)1/(D−3)

− 1

]−1/m

for φ > φg. (36)
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Figure 11. Shear viscosity µa(γ̇ ) versus the shear rate γ̇ for untreated silica fumes in
polypropylene. Filler volume fraction φ = 0.08 (◦) and φ = 0.17 (�). The dashed curve
represents the viscosity of the unfilled polymer φ = 0 ( ). The solid curves are calculated from
the microrheological model.

The shear-thinning behaviour of flocculated suspension arises from the ability of clusters
to screen the shear field and trap the interior fluid. For a fractal dimension D > 2,
clusters may be considered as impermeable with strong hydrodynamic screening inside the
aggregates. Above the yield stress, the finite-size clusters then behave like compact spheres
of radius R(τ) and the viscous dissipation in the fluid between the aggregates determines
the effective viscosity of the suspension. Therefore, we may introduce the effective volume
fraction φa of clusters and use the reference viscosity law (equation (34)) to estimate the
shear viscosity (µa(φ, τ )/µ0) = (1 − φa)/(1 − φa/φ

∗)2 of the flocculated suspension with
φa(τ ) = φ(R(τ)/a)3−D .

The effective-medium approximation was established from rheo-ultrasonic experi-
ments [12, 23]. As a consequence, we may consider that interacting clusters behave like
isolated aggregates in a fluid of viscosity equal to the shear viscosity of the suspension and
thus experience an effective shear stress τ = µa(φ, τ)γ̇ . Equations (35) and (36) together, and
the estimate of the shear viscosity of the aggregated suspension with the condition τ = µa(γ̇ )γ̇ ,
then give a non-linear expression for the effective viscosity. For a fractal dimension D = 2,
the rheological equation then takes the form [15]

√
τ

[
1 −

(
τ0

τ

)m]
= √

µγ

[
1 − φ

1 − φ

(
τ ∗

τ

)m]1/2

(37)

with

µ = µ0(γ̇ )
1 − φ

(1 − φ/φ∗)2
(38)

where τ ∗ is the critical disaggregation shear stress and µ the viscosity of the dispersed
suspension in the high-shear regime.

Taking C = 1.5, n = 0.39 and µ0m = 2.2 kPa s−1, the Bird–Carreau model (equation (36))
describes well the shear viscosity of the unfilled PP homopolymer (figure 11). We have
further determined the shear viscosity µa(γ̇ ) of untreated silica fumes in suspension in PP
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homopolymer. On increasing the shear rate, clusters are progressively broken and the viscosity
decreases because of the lower fluid volume fraction trapped in the aggregates. For filler volume
fraction close to 0.08, the shear viscosity still exhibits a Newtonian behaviour at low shear
rates. As the filler volume fraction increases, a yield stress becomes apparent.

Viscoelastic properties of the polymeric matrix further dominate the rheological behaviour
in the higher-shear regime (figure 11). Assuming rigid clusters (m = 1/3) of fractal dimension
D = 2 and from the critical shear stress τ ∗ determined by ultrasonic experiments, we
further describe the shear-thinning behaviour of filled PP homopolymer with untreated silica
fume particles. The viscosimetric method thus confirms that silica fume aggregates can
be considered as rigid clusters. Both the scattering and viscosimetry methods can give an
estimate of the disaggregation shear stress τ ∗ representative of the mechanical force required
to disrupt the bonds between particles. However, the critical disaggregation shear stresses τ ∗

determined from rheo-acoustic and viscosimetric experiments differ by a factor of 10. The
viscosimetric method probably underestimates the critical disaggregation shear stress τ ∗, since
particle aggregation dominates the rheological behaviour in the low-shear regime and the shear
viscosity is not very sensitive to the presence of small aggregates.

6. Conclusions

In the present study, a rheo-acoustic approach for investigating the shear break-up processes of
fractal polydisperse fillers has been proposed and applied to silica fume aggregates under well
defined hydrodynamic conditions. Within the framework of fractal aggregation, the ultrasound
scattering power from a dense distribution of irreversible Rayleigh polydisperse clusters is
nearly isotropic. Far-field coherence effects and polydispersity of the scatterers together
determine the cluster volume dependence of the dimensionless ultrasonic scattering coefficient
without dependence on filler volume fraction, fractal dimension of the aggregates or particle
size distribution because the ultrasonic wave cannot resolve the internal structure of aggregates
smaller than the wavelength. The ultrasound scattering technique has the main advantage of
being only sensitive to cluster volume, whatever the internal structure of the clusters. The
rheo-acoustic model for cluster break-up describes the ultrasonic experiments well. The flow-
dependent changes of the ultrasound scattered power from silica fume clusters support the
use of the effective-medium approximation in the microrheological models. The shear stress
dependence of the dimensionless ultrasonic scattering coefficient further indicates that silica
fume aggregates can be considered as rigid clusters (m = 1/3) with a fractal dimension D = 2,
since small elastic deformations are transmitted over the whole structure and then preserve the
structure of rigidly connected particles in relation to irreversible aggregation. The ultrasound
scattering technique is better suited for determining the critical disaggregation shear stress of
silica fume suspensions in relation to the surface treatment of the fillers. Good correlations
are further obtained when comparing ultrasonic experiments, either static or during flow, with
impact tests. This study clearly demonstrates that the rheo-acoustic method provides a powerful
means for examining the mean-field approximation used in the microrheological models and
analysing the break-up processes of fractal clusters in a shear field. From the microrheological
model and measurements of the disaggregation shear stress, the shear-thinning behaviour of
silica fume clusters is fairly well described.
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